The present article reports a numerical analysis of instability coupled by a spinning mode in an annular combustor. This corresponds to experiments carried out on the MICCA test facility equipped with 16 matrix burners. Each burner response is represented by means of a global experimental flame describing function (FDF). A harmonic balance nonlinear stability analysis is carried out by combining the FDF with a Helmholtz solver to determine the system dynamics trajectories in a frequency-growth rate plane. The influence of the distribution of the volumetric heat release corresponding to each burner is investigated in a first stage. Even though each of the 16 burners is compact with respect to the transverse mode wavelength, and the 16 flames occupy the same volume, this distribution of heat release is not compact in the azimuthal direction and simulations reveal an influence of this volumetric distribution on frequencies and growth rates. This study emphasizes the importance of providing a suitable description of the flame zone geometrical extension and correspondingly an adequate representation of the level of heat release rate fluctuation per unit volume. It is found that these two items can be deduced from a knowledge of the heat release distribution under steady-state operating conditions. Once the distribution of the heat release fluctuations is unequivocally defined, limit cycle simulations are performed. For the conditions explored, simulations retrieve the spinning nature of the self-sustained mode that was identified in the experiments both in the plenum and in the combustion chamber.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners




    Erscheinungsdatum :

    2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.30 / 52.52 / 52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen





    Heat Release Distribution in the LRE Combustor in Stable and Unstable Modes

    Lubarsky, E. / Zinn, B. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2008


    Spinning and Azimuthally Standing Acoustic Modes in Annular Combustors

    Evesque, Stephanie / Polifke, Wolfgang / Pankiewitz, Christian | AIAA | 2003


    Thermoacoustic analysis of annular combustor

    Krebs, Werner / Walz, Guenther / Hoffmann, Stefan | AIAA | 1999