The present work deals with the thermo-economic analysis of an innovative combined power cycle consisting of a molten-salt solar tower power plant with storage supported by additional heat provided from the exhaust of a topping gas-turbine unit. A detailed dynamic model has been elaborated using an in house simulation tool that simultaneously encompasses meteorological, demand and price data. A wide range of possible designs are evaluated in order to show the trade-offs between the objectives of achieving sustainable and economically competitive designs. Results show that optimal designs of the novel concept are a promising cost-effective hybrid option that can successfully fulfill both the roles of a gas peaker plant and a baseload solar power plant in a more effective manner. Moreover, designs are also compared against conventional combined cycle gas turbine (CCGT) power plants and it is shown that, under specific peaking operating strategies (P-OSs), the innovative concept cannot only perform better from an environmental standpoint but also economically.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing the Economic Competitiveness of Concentrating Solar Power Plants Through an Innovative Integrated Solar-Combined Cycle With Thermal Energy Storage




    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.30 / 52.52 / 52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen