An experimental study regarding the influence of the air port design on the inverse diffusion flame characteristics was performed for two different burner configurations, wherein the combustion/heat transfer performance was optimized. In the first configuration that comprised a single air port and distributed fuel ports, decreasing the air jet diameter enhanced the combustion efficiency by 3.6% as testified by recording a maximum decrease of 81.3% in the CO emissions. As the central air jet Reynolds number thus reached 18038, the stability limit was extended by 181% in terms of the air jet velocity; while the flame length was reduced by 38.6%. Inasmuch as the flow residence time across the high-temperature zone thus decreased, NOx emissions as low as 6 ppm were obtained. In the other configuration that had multiple air ports, there was a decrease in the CO, HC, and NOx emissions respectively by 69%, 58%, and 31% in comparison to those of the single port having the same port area. It was found that the smallest jet diameter was accompanied by the highest peak temperature as well as the maximum heat flux to a plate on which the flame impinged, respectively, having the values of 1761℃ and 11.4 kW/m2. In this regard, increasing the air jet Reynolds number by 30% increased the peak flame temperature by 8.3%. In the primary equivalence ratio range between 0.8 and 2.0, the impingement plate optimum spacing for the maximum heat flux was found to correlate well with Reynolds number. Combining the nonunity Lewis number and the Gas Research Institute-3 (GRI-3) kinetics with the k − ɛ model verified the fuel jet deflection and soot development, but overpredicted the NOx emissions by 11.5%. Increasing the center-to-center distance between the central air jet and the distributed fuel ports reduced the flame length by 19%.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Performance enhancement of inverse diffusion flame burners with distributed ports




    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch



    Klassifikation :

    BKL:    52.30 / 52.50 / 52.50 Energietechnik: Allgemeines / 52.30 Strömungskraftmaschinen, Turbomaschinen
    Lokalklassifikation TIB:    275/5345/5365/5500



    PAH Formation in an Inverse Diffusion Flame

    Katta, Viswanath / Blevins, Linda / Roquemore, William | AIAA | 2003


    Laminar Flame Speed Study of Syngas Mixtures with Straight and Nozzle Burners

    Bouvet, Nicolas / Lee, Seong-Young / Gökalp, Iskender et al. | AIAA | 2007


    Temperature and velocity non-uniformity in edge cooled flat flame burners

    Kihara,D.H. / Fox,J.S. / Kinoshita,C.M. et al. | Kraftfahrwesen | 1975