The use of carbon-fiber-reinforced polymer (CFRP) in modern satellites has led to a significant amount of space debris, including fragments of CFRP and high-density metals such as steel and copper, produced during catastrophic breakup events. To address this issue, NASA's White Sands Test Facility (WSTF) has been developing the capability to launch "flake-like" and long "needle-like" projectiles. WSTF tested projectiles with different length-to-diameter ratios (L/D), impacting aluminum Whipple shields with thermal blankets on the outer surface, at velocities exceeding 6 km/s. The results of the study suggest that launching and imaging shaped projectiles at high velocities is feasible. Ongoing research is now focused on improving the techniques for launching and imaging shaped projectiles under hypervelocity conditions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Engineering Launch Methods for Non-Spherical Hypervelocity Projectiles


    Beteiligte:
    Daniel Rodriguez (Autor:in) / Daniel Wentzel (Autor:in) / Marcus Sandy (Autor:in) / Donald J Henderson (Autor:in) / Arturo Pardo (Autor:in) / Joshua E Miller (Autor:in) / Eric L Christiansen (Autor:in) / Bruce A Davis (Autor:in) / Robert J McCandless (Autor:in)

    Kongress:

    2nd International Orbital Debris Conference ; 2023 ; Sugar Land, TX, US


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch






    Engineering Launch Methods for Non-Spherical Hypervelocity Projectiles

    D. Rodriguez / D. Wentzel / M. Sandy et al. | NTIS | 2023


    Simulation of Hypervelocity Water Entry by Spherical Projectiles

    Smith, Joshua / Viqueira-Moreira, Manuel / Brehm, Christoph et al. | AIAA | 2024