Nuclear Electric Propulsion (NEP) is a suite of technologies with the potential to enable crewed opposition-class missions to Mars. Each subsystem comprising an NEP system has multiple technology options that present tradeoffs in vehicle sizing and technology development risk. Multiple vehicle concepts have been studied in the past and are currently being studied at NASA. Three models have been developed to illustrate the impact of key technology parameters on overall sizing for a crewed Mars transportation vehicle. Vehicle mass required to close the mission as a function of NEP system alpha (kWe/kg) and specific impulse (Isp) is estimated with a detailed trajectory model. A power system mass model estimates alpha as a function of power and radiator mass assumption. A power conversion system thermodynamic model predicts the radiator area required to close a Brayton cycle power conversion system. Combined with the architecture mass required for mission closure, the radiator area and alpha model provide insight into how technology development may impact the mission. Our focus is on parametric sweeps of the whole design space rather than any particular point design. Results from the mission model comparing electric propulsion technology (Hall, Ion, Magnetoplasmadynamic) and both 2039 and 2042 opposition-class mission launch windows are included. The results of the study illustrate the technology parameters that can result in mission closure and illustrate where the architecture is sensitive to variations in technology performance or requirements.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Hybrid NEP-Chemical Vehicle and Propulsion Technology Study for Crewed Mars Missions


    Beteiligte:
    Matthew Duchek (Autor:in) / Matteo Clark (Autor:in) / Alejandro Pensado (Autor:in) / Christopher Harnack (Autor:in) / William Machemer (Autor:in) / Emanuel Grella (Autor:in) / Min Qu (Autor:in)

    Kongress:

    68th JANNAF Propulsion Meeting ; 2021 ; Virtual, US


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Hybrid NEP-Chemical Vehicle and Propulsion Technology Study for Crewed Mars Missions

    Matthew Duchek / Matteo Clark / Alejandro Pensado et al. | NTRS


    Combining Solar Electric Propulsion and Chemical Propulsion for Crewed Missions to Mars

    Percy, Tom / McGuire, Melissa / Polsgrove, Tara | NTRS | 2015



    Combining Solar Electric Propulsion and chemical propulsion for crewed missions to Mars

    Percy, Tom / McGuire, Melissa / Polsgrove, Tara | IEEE | 2015


    Combined 1-MW Solar Electric and Chemical Propulsion for Crewed Mars Missions

    L. M. Burke / S. R. Oleson / Z. C. Zoloty et al. | NTIS | 2023