Urban Air Mobility (UAM) is an emerging aviation sector and is playing an integral part in the on-demand mobility revolution. UAM is powered by the convergence of advances in distributed electrical propulsion (DEP) and vehicle autonomy. The complexity of operations in the urban environment and the unconventional vehicle configurations designed to take advantage of new propulsion technologies, result in numerous challenges that benefit from a control-centric approach. In this talk we outline some of these challenges and present our current approach to addressing them. For example, in order to achieve full market potential and access to UAM, vehicle autonomous flight is required. A key barrier to autonomous flight in a large multi-agent system is dealing with off-nominal situations and contingencies in a safe and predictable manner. We present our approach to intelligent contingency management, and share recent results and open problems. Additionally, we discuss another major barrier to ubiquitous UAM – the noise signature produced by vehicles with multiple rotors. We present our approach to minimizing such noise within the framework of the acoustically-aware vehicle.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Urban Air Mobility: A Control-Centric Approach to Addressing Technical Challenges


    Beteiligte:

    Kongress:

    IEEE CSS Forum On Robotic and Control Engineering seminar ; 2021 ; Virtual, US


    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch