The driving precision landing requirement for the Autonomous Landing and Hazard Avoidance Technology project is to autonomously land within 100m of a predetermined location on the lunar surface. Traditional lunar landing approaches based on inertial sensing do not have the navigational precision to meet this requirement. The purpose of Terrain Relative Navigation (TRN) is to augment inertial navigation by providing position or bearing measurements relative to known surface landmarks. From these measurements, the navigational precision can be reduced to a level that meets the 100m requirement. There are three different TRN functions: global position estimation, local position estimation and velocity estimation. These functions can be achieved with active range sensing or passive imaging. This paper gives a survey of many TRN approaches and then presents some high fidelity simulation results for contour matching and area correlation approaches to TRN using active sensors. Since TRN requires an a-priori reference map, the paper concludes by describing past and future lunar imaging and digital elevation map data sets available for this purpose.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Overview of terrain relative navigation approaches for Precise Lunar Landing


    Beteiligte:

    Erscheinungsdatum :

    2008-03-01


    Medientyp :

    Preprint


    Format :

    Keine Angabe


    Sprache :

    Englisch



    Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing

    Johnson, Andrew E. / Montgomery, James F. | NTRS | 2008


    Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing

    Johnson, Andrew E. / Montgomery, James F. | IEEE | 2008


    Optical Terrain Relative Navigation Approaches to Lunar Orbit, Descent and Landing

    Steffes, Stephen R. / Monterroza, Fredy / Benhacine, Lylia et al. | AIAA | 2019


    Terrain Relative Navigation in a Lunar Landing Scenario Using autoNGC

    Shoemaker, Michael A. / Hur-Diaz, Sun / Liounis, Andrew et al. | TIBKAT | 2022


    Terrain Relative Navigation in a Lunar Landing Scenario Using autoNGC

    Shoemaker, Michael A. / Hur-Diaz, Sun / Liounis, Andrew et al. | AIAA | 2022