A novel algorithm is presented that provides an improvement over a traditional parameter optimization method when solving time-optimal, finite-burn pseudo-rendezvous spacecraft trajectory problems. A hybrid optimization procedure is described that converts a set of multiple-impulses, representing high- or low-thrust maneuvers, to an exact time-optimal finite-burn trajectory for a thrust limited, constant exhaust velocity spacecraft. The Hybrid Method applies a control law derived from the Euler-Lagrange system of equations within the classical Indirect Method to a modern Direct Method. An iterative adjoint-control transformation and an evolving constraint vector are introduced to solve the optimal control two-point boundary value problem. This method requires no prior knowledge of the solution, which adds simplicity to the trajectory design process and aids automation. Examples are shown for low-thrust apogee raise maneuvers, non-coplanar Earth orbit transfers, and a modified Deep Space 1 low-thrust trajectory. A numerically significant improvement to objective cost is shown across all application problems compared to a traditional solution method, as well as a significant improvement to convergence speed for a select class of problems.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Multi-Impulse to Time Optimal Finite Burn Trajectory Conversion


    Beteiligte:
    Joshua A Fogel (Autor:in) / Maxon Widner (Autor:in) / Jacob Williams (Autor:in) / Amelia Batcha (Autor:in)

    Kongress:

    2020 AIAA SciTech Forum ; 2020 ; Orlando, FL, US


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Multi-Impulse to Time Optimal Finite Burn Trajectory Conversion

    Fogel, Joshua A. / Widner, Maxon / Williams, Jacob et al. | AIAA | 2020


    MULTI-IMPULSE TO TIME OPTIMAL FINITE BURN TRAJECTORY CONVERSION

    Fogel, Joshua A. / Widner, Maxon / Williams, Jacob et al. | TIBKAT | 2020


    Optimal two-impulse rendezvous with terminal tangent burn considering the trajectory constraints

    Xie, Chengqing / Zhang, Gang / Zhang, Yingchun et al. | Elsevier | 2014