A platform has been developed for two or more vehicles with one or more residing within the other (a marsupial pair). This configuration consists of a large, versatile robot that is carrying a smaller, more specialized autonomous operating robot(s) and/or mobile repeaters for extended transmission. The larger vehicle, which is equipped with a ramp and/or a robotic arm, is used to operate over a more challenging topography than the smaller one(s) that may have a more limited inspection area to traverse. The intended use of this concept is to facilitate the insertion of a small video camera and sensor platform into a difficult entry area. In a terrestrial application, this may be a bus or a subway car with narrow aisles or steep stairs. The first field-tested configuration is a tracked vehicle bearing a rigid ramp of fixed length and width. A smaller six-wheeled vehicle approximately 10 in. (25 cm) wide by 12 in. (30 cm) long resides at the end of the ramp within the larger vehicle. The ramp extends from the larger vehicle and is tipped up into the air. Using video feedback from a camera atop the larger robot, the operator at a remote location can steer the larger vehicle to the bus door. Once positioned at the door, the operator can switch video feedback to a camera at the end of the ramp to facilitate the mating of the end of the ramp to the top landing at the upper terminus of the steps. The ramp can be lowered by remote control until its end is in contact with the top landing. At the same time, the end of the ramp bearing the smaller vehicle is raised to minimize the angle of the slope the smaller vehicle has to climb, and further gives the operator a better view of the entry to the bus from the smaller vehicle. Control is passed over to the smaller vehicle and, using video feedback from the camera, it is driven up the ramp, turned oblique into the bus, and then sent down the aisle for surveillance. The demonstrated vehicle was used to scale the steps leading to the interior of a bus whose landing is 44 in. (.1.1 m) from the road surface. This vehicle can position the end of its ramp to a surface over 50 in. (.1.3 m) above ground level and can drive over rail heights exceeding 6 in. (.15 cm). Thus configured, this vehicle can conceivably deliver the smaller robot to the end platform of New York City subway cars from between the rails. This innovation is scalable to other formulations for size, mobility, and surveillance functions. Conceivably the larger vehicle can be configured to traverse unstable rubble and debris to transport a smaller search and rescue vehicle as close as possible to the scene of a disaster such as a collapsed building. The smaller vehicle, tethered or otherwise, and capable of penetrating and traversing within the confined spaces in the collapsed structure, can transport imaging and other sensors to look for victims or other targets.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Teleoperated Marsupial Mobile Sensor Platform Pair for Telepresence Insertion Into Challenging Structures


    Beteiligte:


    Erscheinungsdatum :

    2011-07-01


    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch





    TELEOPERATED ROBOTIC SYSTEM WITH MOBILE PLATFORM LIFT SYSTEM

    SMITH FRASER M / OLIVIER MARC X | Europäisches Patentamt | 2023

    Freier Zugriff

    Pair-Programming with a Telepresence Robot

    Leoste, Janika / Pöial, Jaanus / Marmor, Kristel et al. | Springer Verlag | 2023


    A review of mobile robotic telepresence

    Kristoffersson, Annica / Coradeschi, Silvia / Loutfi, Amy | BASE | 2013

    Freier Zugriff

    A review of mobile robotic telepresence

    Kristoffersson, Annica / Coradeschi, Silvia / Loutfi, Amy | BASE | 2013

    Freier Zugriff