Radionavigation Satellite Service (RNSS) systems such as the U.S. Global Positioning System (GPS) and the Russian Global Navigation Satellite System (GLONASS) are primarily being used today in the space-to-Earth direction (i.e., from GPS satellite to Earth user) for a broad range of applications such as geological surveying; aircraft, automobile, and maritime navigation; hiking and mountain climbing; and precision farming and mining. However, these navigation systems are being used increasingly in space. Beginning with the launch of the TOPEX/Poseidon remote-sensing mission in 1992, over 90 GPS receivers have flown onboard spacecraft for such applications as real-time spacecraft navigation, three-axis attitude control, precise time synchronization, precision orbit determination, and atmospheric profiling. In addition to use onboard many science spacecraft, GPS has been used or is planned to be used onboard the shuttles, the International Space Station, the International Space Station Emergency Crew Return Vehicle, and many commercial satellite systems such as Orbcomm, Globalstar, and Teledesic. From a frequency spectrum standpoint, however, one important difference between the space and terrestrial uses of GPS is that it is being used in space with no interference protection. This is because there is no frequency allocation for the space-to-space use of GPS (i.e., from GPS satellite to user spacecraft) in the International Telecommunications Union (ITU) regulatory table of frequency allocations. If another space-based or groundbased radio system interferes with a spaceborne GPS user, the spaceborne user presently has no recourse other than to accept the interference. Consequently, for the past year and a half, the NASA Glenn Research Center at Lewis Field and other Government agencies have been working within ITU toward obtaining a GPS space-to-space allocation at the next World Radio Conference in the year 2000 (WRC 2000). Numerous interference studies have been conducted in support of a primary space-tospace allocation in the 1215- to 1260-MHz and 1559- to 1610-MHz RNSS bands. Most of these studies and analyses were performed by Glenn and submitted as U.S. input documents to the international Working Party 8D meetings in Geneva, Switzerland. In the structure of the ITU, Working Party 8D is responsible for frequency spectrum issues in the RNSS and the mobile satellite service (MSS). The full texts of the studies are available from the ITU web site under Working Party 8D contributions. Note that because spaceborne RNSS receivers operate in a receive-only mode with navigation signals already being broadcast toward the Earth, the addition of a space-tospace allocation will not result in interference with other systems. A space-based RNSS receiver, however, could experience interference from systems of other services, including intraservice interference from other RNSS systems. The interference scenarios examined in the studies can be inferred from the following frequency allocation charts. In these charts, services labeled in all capital letters (e.g., "ARNS") have primary status, whereas those labeled with sentence-style capitalization (e.g., "Amateur radio") have secondary status (i.e., a service with secondary status cannot claim interference protection from or cause harmful interference to a service with primary status). Charts showing the ITU frequency allocations in the 960 to 1350 MHZ range and the 1525-1660 MHZ range are discussed and presented.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Proposal Drafted for Allocating Space-to-Space Frequencies in the GPS Spectrum Bands


    Beteiligte:


    Erscheinungsdatum :

    2000-03-01


    Medientyp :

    Sonstige


    Format :

    Keine Angabe


    Sprache :

    Englisch





    Continental Tel gets 'drafted'

    Sweedar, P. | Tema Archiv | 1978


    PVC drafted for jets

    Engineering Index Backfile | 1967