The Geospace Electrodynamics Connections (GEC) mission plan is to launch multiple spacecraft to perform in-situ atmospheric science in the lower ionosphere. There is limited experience in this low altitude region with the Atmospheric Explorer-C (AE-C) being the last spacecraft to explore this region in 1973. AE-C flew an eccentric orbit using maneuvers to lower its perigee to near 130 km at various times during its mission. GEC will advance the science performed by AE-C by performing multiple low-perigee, atmospheric dipping campaigns for extended durations. AE-C kept its perigee near 130 km for only a total of roughly 1 day. Furthermore, GEC plans to carry a more diverse suite of instruments and will be able to capture different temporal and spatial phenomena through the use of multiple spacecraft flying in a string of pearls formation. The mission analysis for GEC has been broken into two parts: the analysis of the parking orbit with the dipping campaigns and the examination of the multi-satellite dynamics of the GEC constellation. The analysis described in this paper examines the capability to meet the requirements necessary to support the 10 dipping campaigns using a single spacecraft as a representative of all three in the constellation. Further analysis is being performed to analyze the multi-satellite nature of the GEC mission.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Orbit Optimization for the Geospace Electrodynamics Connections (GEC) Mission


    Beteiligte:

    Kongress:

    AIAA/AAS Astrodynamics Specialists Conference ; 2004 ; Providence, RI, United States


    Erscheinungsdatum :

    2003-01-01


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :