Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel


    Beteiligte:

    Kongress:

    36th Joint Propulsion Conference ; 2000 ; Huntsville, AL, United States


    Erscheinungsdatum :

    2000-01-01


    Medientyp :

    Preprint


    Format :

    Keine Angabe


    Sprache :

    Englisch


    Schlagwörter :


    Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel

    Huebner, Lawrence D. / Rock, Kenneth E. / Witte, David W. et al. | NTRS | 2000


    Hyper-X engine testing in the NASA Langley 8-foot high temperature tunnel

    Huebner, Lawrence / Rock, Kenneth / Witte, David et al. | AIAA | 2000