The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. Thus, Runway Operations Planning (ROP) is a critical component of airport operations planning in general and surface operations planning in particular. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, may be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. Generating optimal runway operations plans was approached in with a 'one-stage' optimization routine that considered all the desired objectives and constraints, and the characteristics of each aircraft (weight class, destination, Air Traffic Control (ATC) constraints) at the same time. Since, however, at any given point in time, there is less uncertainty in the predicted demand for departure resources in terms of weight class than in terms of specific aircraft, the ROP problem can be parsed into two stages. In the context of the Departure Planner (OP) research project, this paper introduces Runway Operations Planning (ROP) as part of the wider Surface Operations Optimization (SOO) and describes a proposed 'two stage' heuristic algorithm for solving the Runway Operations Planning (ROP) problem. Focus is specifically given on including runway crossings in the planning process of runway operations. In the first stage, sequences of departure class slots and runwy crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program. Preliminary results from the algorithm implementation on real-world traffic data are included.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Runway Operations Planning: A Two-Stage Solution Methodology


    Beteiligte:
    I. Anagnostakis (Autor:in) / J. P. Clarke (Autor:in)

    Erscheinungsdatum :

    2003


    Format / Umfang :

    12 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch




    Runway Operations Planning: A Two-Stage Solution Methodology

    Anagnostakis, Ioannis / Clarke, John-Paul | NTRS | 2003



    Runway Operations Planning: A Two-Stage Heuristic Algorithm

    Anagnostakis, Ioannis / Clarke, John-Paul | NTRS | 2003



    AIAA-2002-5886 Runway Operations Planning: A Two-Stage Heuristic Algorithm

    Anagnostakis, I. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2002