The Common Probe Study was funded by the NASA's Planetary Science Division in the Science Mission Directorate in 2018 to investigate the feasibility of a common aeroshell design for atmospheric probe missions at Venus, Jupiter, Saturn, Uranus, and Neptune. The study involved 4 NASA Centers: Ames Research Center, Goddard Space Flight Center, Langley Research Center, and the Jet Propulsion Laboratory. The common aeroshell design that was studied was a 400 kg, 1.5 m diameter, 45-degree sphere cone shape with a high density heatshield material (Heatshield for Extreme Entry Environments Technology, or HEEET) and a parachute system to extract the descent vehicle. This size of aeroshell could accommodate a descent vehicle of 0.75 m diameter, which could encompass both Tier 1 and Tier 2 science instruments at each of the 5 destinations. Study methodology: First, a notional payload of instruments for each destination was defined based on the top priority measurements indicated by the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified that bounded the EFPA range.Next, 3-DoF simulations for entry trajectories were run using the entry state vectors from the interplanetary trajectories. Conical ribbon parachutes were sized based on heatshield separation dynamics. Aero-heating correlations were used to generate stagnation point convective and radiative heat flux profiles. High fidelity thermal response models for various TPS materials were used to size stagnation point thicknesses, with margins based on previous studies. Backshell TPS masses were assumed based on scaled heat fluxes from the heatshield and also from previous mission concepts.Based on these analyses, we have found that the common design is applicable for atmospheric probe missions for 4 out of the 5 destinations. Because of the unique gravity well for Jupiter, the entry environments are more severe resulting in heat loads an order of magnitude higher than for the other destinations.The next step is to determine what follow-on activities NASA should engage in. A questionnaire for the atmospheric probe community has been developed, with a focus on what size of aeroshell should be further analyzed (smaller or same diameter), and what incentives would make using such an aeroshell, if assembled and available, desirable to mission proposers.Preliminary results from this questionnaire will be presented.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Common Probe Design Study and Follow-On Activities


    Beteiligte:
    H. H. Hwang (Autor:in)

    Erscheinungsdatum :

    2019


    Format / Umfang :

    24 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch