This project is performed under the Office of Naval Research program on Basic and Applied Research in Sea- Based Aviation (ONR BAA12-SN-0028). This project addresses the Sea Based Aviation (SBA) initiative in Advanced Handling Qualities for Rotorcraft. Landing a rotorcraft on a moving ship deck and under the influence of the unsteady ship airwake is extremely challenging. In high sea states, gusty conditions, and a degraded visual environment, workload during the landing task begins to approach the limits of a human pilot's capability. It is a similarly demanding task for shipboard launch and recovery of a VTOL UAV. There is a clear need for additional levels of stability and control augmentation and, ultimately, fully autonomous landing (possibly with manual pilot control as a back-up mode for piloted flight). There is also a clear need for advanced flight controls to expand the operational conditions in which safe landings for both manned and unmanned rotorcraft can be performed. This project seeks to develop advanced control law frameworks and design methodologies to provide autonomous landing (or, alternatively, a high level of control augmentation for pilot-in-the-loop landings). The design framework will focus on some of the most critical components of autonomous landing control laws with the objective of improving safety and expanding the operational capability of manned and unmanned rotorcraft. The key components include approach path planning that allows for a maneuvering ship, high performance station-keeping and gust rejection over a landing deck in high winds/sea states, and deck motion feedback algorithms to allow for improved tracking of the desired landing position and timing of final descent.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States


    Beteiligte:
    J. F. Horn (Autor:in) / J. Tritschler (Autor:in) / C. He (Autor:in)

    Erscheinungsdatum :

    2014


    Format / Umfang :

    18 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch