Two supersonic vertical takeoff or landing (VTOL) aircraft engine types, a conventional medium bypass ratio turbofan, and a turbine bypass turbojet were studied. The aircraft assumed was a clipped delta wing with canard configuration. A VTOL deck launched intercept, DLI, mission with Mach 1.6 dash and cruise segments was used as the design mission. Several alternate missions requiring extended subsonic capabilities were analyzed. Comparisons were made between the turbofan (TF) and the turbine bypass turbojet (TBE) engines in airplane types using a Remote Augmented Lift Systems, RALS and a Lift plus Lift Cruise system (L+LC). The figure of merit was takeoff gross weight for the VTOL DLI mission. The results of the study show that the turbine bypass turbojet and the conventional turbofan are competitive engines for both type of aircraft in terms of takeoff gross weight and range. However, the turbine bypass turbojet would be a simpler engine and may result in more attractive life cycle costs and reduced maintenance. The RALS and L+LC airplane types with either TBE or TF engines have approximately the same aircraft takeoff gross weight.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    A Remote Augmentor Lift System with a Turbine Bypass Engine


    Beteiligte:
    L. H. Fishbach (Autor:in) / L. C. Franciscus (Autor:in)

    Erscheinungsdatum :

    1982


    Format / Umfang :

    12 pages


    Medientyp :

    Report


    Format :

    Keine Angabe


    Sprache :

    Englisch