This paper explores the design and feasibility of a 200-passenger, 30- to 40-knot emission-free ferry as a potential variant of the traditionally powered Coastal Cruiser 200 ferry currently operating in the Chinese Pearl River Delta. The Pearl River Delta is one of China’s most densely urbanized regions and faces numerous social, health, and economic issues due to air pollution. In addition, globally, there are no currently-operating zero-emission ferries that, at minimum, sail at 30 knots and carry 200 passengers. To assess the feasibility of the new ferry, a two step approach was followed. First, an evaluation of efficiency improving measures, energy carriers, and propulsion systems was performed to assess the tradeoffs and identify early design choices. Second, to quantify the most technically feasible design, a technical parametric model was developed specifically for this case study. Results showed that the ferry is technically feasible using batteries, compressed hydrogen fuel cells, or liquid hydrogen fuel cells; however, each has its distinct advantages and disadvantages which influence the potential final viability. Despite the regional focus of the case study, results are applicable to all ferries with similar design requirements.


    Zugriff

    Zugriff über TIB


    Exportieren, teilen und zitieren



    Titel :

    Design and feasibility of a 30- to 40-knot emission-free ferry


    Beteiligte:
    Doornebos, Patryk (Autor:in) / Francis, Moreno (Autor:in) / le Poole, Joan (Autor:in) / Kana, Austin A. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2023-12-22




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    16-knot ferry ship

    Engineering Index Backfile | 1941


    17-knot ferry "Princessan Margaretha"

    Engineering Index Backfile | 1955


    17-knot ferry "Princessan Margaretha"

    Engineering Index Backfile | 1955


    17-Knot ferry ship "Malmohus"

    Engineering Index Backfile | 1944


    20-knot passenger/vehicle ferry

    Engineering Index Backfile | 1962