Public transport disruptions can result in major impacts for passengers and operator. Our study objective is to predict disruption exposure at different stations, incorporating their location-specific characteristics. Based on a 13-month incident database for the Washington metro network, we successfully develop a supervised learning model to predict the expected number of disruptions, per type, station and time of day. This supports public transport authorities and operators to prioritize what type of disruptions at what location to focus on, to potentially achieve the largest reduction in disruption exposure. Our clustering results show that start/terminal and transfer stations are most susceptible to disruptions, mainly due to operations- and vehicle-related disruptions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis and Prediction of Disruptions in Metro Networks


    Beteiligte:
    Yap, Menno (Autor:in) / Cats, Oded (Autor:in)


    Erscheinungsdatum :

    2019-06-01


    Format / Umfang :

    813649 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Metro service disruptions: how do people choose to travel?

    Pnevmatikou, Anastasia M. / Karlaftis, Matthew G. / Kepaptsoglou, Konstantinos | Online Contents | 2015


    Metro service disruptions: how do people choose to travel?

    Pnevmatikou, Anastasia M. / Karlaftis, Matthew G. / Kepaptsoglou, Konstantinos | Online Contents | 2015


    Detecting metro service disruptions via large-scale vehicle location data

    Zhang, Nan / Graham, Daniel J. / Bansal, Prateek et al. | Elsevier | 2022


    An analytical model for controlling disruptions on a metro line

    Bueno-Cadena, Carlos E. / Munoz, Juan Carlos / Tirachini, Alejandro | Elsevier | 2020


    Rescheduling a metro line in an over-crowded situation after disruptions

    Gao, Yuan / Kroon, Leo / Schmidt, Marie et al. | Elsevier | 2016