The robot astronaut is a multi-body dynamics system with multi-degrees of freedom, nonlinearity and strong coupling. Its motion control and operation target are in micro-gravity environment, in which the robot is in a natural floating state. On space station, the dynamics of the robot is influenced by the internal force, contact force, inertial force and joint friction. At this point, the collision between the robot and the space station due to movement will greatly influence the safety of the robot and may cause serious damage. In this paper, we propose a control strategy based on dynamics and force compliant dual feed forward torque compensation, which greatly eliminates the impact force during the collision and realizes the safe movement of the robot on space station. Simulation results validate the effectiveness of the control strategy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory Planning Based on Dual Torque Feedforward Control for Robot Astronaut Safe Movement on Space Station


    Beteiligte:
    Zhihong, Jiang (Autor:in) / Jiafeng, Xu (Autor:in) / Hui, Li (Autor:in) / Qiang, Huang (Autor:in)


    Erscheinungsdatum :

    2018-08-01


    Format / Umfang :

    953996 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Astronaut/EVA construction of Space Station

    HEARD, JR., WALTER / BUSH, HAROLD / WATSON, JUDITH et al. | AIAA | 1988


    Astronaut/EVA construction of Space Station

    Heard, Walter L., Jr. / Bush, Harold G. / Watson, Judith J. et al. | NTRS | 1988


    Space station extravehicular load care method based on astronaut operation

    SONG YAN / DONG ZHANMIN / LIU YANWEI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Shuttle crew station astronaut interfaces

    Franklin, G. C. | NTRS | 1978