Recurrent neural networks are able to learn complex long-term relationships from sequential data and output a probability density function over the state space. Therefore, recurrent models are a natural choice to address path prediction tasks, where a trained model is used to generate future expectations from past observations. When applied to security applications, like predicting pedestrian paths for risk assessment, a point-wise greedy evaluation of the output pdf is not feasible, since the environment often allows multiple choices. Therefore, a robust risk assessment has to take all options into account, even if they are overall not very likely. Towards this end, a combination of particle filtering strategies and a LSTM-MDL model is proposed to address a multimodal path prediction task. The capabilities and viability of the proposed approach are evaluated on several synthetic test conditions, yielding the counter-intuitive result that the simplest approach performs best. Further, the feasibility of the proposed approach is illustrated on several real world scenes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Particle-based Pedestrian Path Prediction using LSTM-MDL Models


    Beteiligte:
    Hug, Ronny (Autor:in) / Becker, Stefan (Autor:in) / Htibner, Wolfgang (Autor:in) / Arens, Michael (Autor:in)


    Erscheinungsdatum :

    2018-11-01


    Format / Umfang :

    1166635 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network

    Song, Xiao / Chen, Kai / Li, Xu et al. | IEEE | 2021


    A Posture Features Based Pedestrian Trajectory Prediction with LSTM

    Kao, I-Hsi / Zhou, Xiao / Chen, I-Ming et al. | IEEE | 2021


    Social graph convolutional LSTM for pedestrian trajectory prediction

    Zhou, Yutao / Wu, Huayi / Cheng, Hongquan et al. | Wiley | 2021

    Freier Zugriff

    Social graph convolutional LSTM for pedestrian trajectory prediction

    Yutao Zhou / Huayi Wu / Hongquan Cheng et al. | DOAJ | 2021

    Freier Zugriff

    Crossing-Road Pedestrian Trajectory Prediction via Encoder-Decoder LSTM

    Xue, Peixin / Liu, Jianyi / Chen, Shitao et al. | IEEE | 2019