The decision-making model of merging behavior is one of the key technologies of unmanned vehicles. In order to solve the problem of unmanned vehicles’ merging decision making, this paper presents a merging strategy based on Least squares Policy Iteration (LSPI) algorithm, and selects the basis function which includes reciprocal of TTC, relative distance and relative speed to represent state space and discretizes action space. This study synthetically takes consideration o safety, the success of the task, the merging efficiency and comfort in setting reward function, compares the Q-learning with LSPI algorithm, and verifies its adaptability by using NGSIM data. The algorithm can ultimately achieve a success rate of 86%. This research can provide theoretic support and technical basis for the merging decision-making of unmanned vehicles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Intelligent Merging Decision-making of Unmanned Vehicles Based on Reinforcement Learning


    Beteiligte:
    Chen, Xue-mei (Autor:in) / Zhang, Qiang (Autor:in) / Zhang, Zhen-hua (Autor:in) / Liu, Ge-meng (Autor:in) / Gong, Jian-wei (Autor:in) / Chan, Ching-Yao (Autor:in)


    Erscheinungsdatum :

    2018-06-01


    Format / Umfang :

    1778233 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    RESEARCH ON INTELLIGENT MERGING DECISION-MAKING OF UNMANNED VEHICLES BASED ON REINFORCEMENT LEARNING

    Chen, Xue-mei / Zhang, Qiang / Zhang, Zhen-hua et al. | British Library Conference Proceedings | 2018


    Reinforcement Learning-Based On-Ramp Merging Decision-Making for Autonomous Vehicles

    Ma, Ning / Zhang, Ying / Cai, Wangze et al. | IEEE | 2023



    Heuristics-oriented overtaking decision making for autonomous vehicles using reinforcement learning

    Liu, Teng / Huang, Bing / Deng, Zejian et al. | IET | 2020

    Freier Zugriff

    Robust Multiagent Reinforcement Learning toward Coordinated Decision-Making of Automated Vehicles

    Lv, Chen / Chen, Hao / He, Xiangkun | SAE Technical Papers | 2023