In this paper an energy optimal path planning and velocity profile generation for our highly maneuverable Robotic Electric Vehicle research platform ROboMObil is presented. The ROMO [1] is a development of the German Aerospace Center's Robotics and Mechatronics Center to cope with several research topics, like energy efficient, autonomous or remote controlled driving for future (electro-) mobility applications. The main task of the proposed algorithms is to calculate an energy optimal trajectory in a real-time capable way. It is designed to incorporate data from actual traffic situations (e.g. oncoming traffic) or changed conditions (e.g. snowy conditions). The resulting trajectory is then fed forward to a lower level time independent path following control [2] that calculates the motion demands for our energy optimal control allocation. This in turn distributes the demand to the actuators of the over-actuated vehicle. We show a numerical reliable way to formulate the energy optimal path planning optimization objective, which is able to provide a consistent replanning feature considering the actual vehicle states. Besides this, different types of optimization methods are evaluated for their real-time capabilities. The velocity profile will be calculated afterwards and the generation of the profile is also enabled to handle dynamic replanning. Finally, we show several experimental results, using a virtual road definition and tests on a commercial real-time platform.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time capable path planning for energy management systems in future vehicle architectures


    Beteiligte:


    Erscheinungsdatum :

    2014-06-01


    Format / Umfang :

    432365 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    REAL-TIME CAPABLE PATH PLANNING FOR ENERGY MANAGEMENT SYSTEMS IN FUTURE VEHICLE ARCHITECTURES

    Brembeck, J. / Winter, C. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2014


    Real-time path planning for energy recovery management

    Attard, Marvic / Zammit, Brian / Zammit-Mangion, David | IEEE | 2017


    Requirements on Real-Time-Capable Automotive Ethernet Architectures

    Thiele, Daniel / Diemer, Jonas / Richter, Kai R. et al. | SAE Technical Papers | 2014


    Requirements on Real-Time-Capable Automotive Ethernet Architectures

    Axer, P. / Thiele, D. / Ernst, R. et al. | British Library Conference Proceedings | 2014


    Real time automatic robot path planning

    Sanders,D.A. / Billingsley,J. / Robinson,D. et al. | Kraftfahrwesen | 1991