– The purpose of this paper is to present the aerodynamic blade design of a tiltwing aircraft with a multi-objective optimization procedure. The aerodynamic design of tiltrotor blades is a very challenging task in the project of this type of aircraft.

    Design/methodology/approach

    – Tiltrotor blades have to give good performance both in helicopter and aeroplane modes. According to the design parameters (the chords, the twists and the airfoils along the blade), as the optimization objectives are different from one operating condition to another, the blade is the result of a multi-objective constrained optimization based on a controlled elitist genetic algorithm founded on the NSGA-II algorithm. The optimization process uses a BEMT solver to compute rotor performance. To avoid negative effects due to compressibility losses in aeroplane mode, the blade shape has been refined following the normal Mach number criterion.

    Findings

    – It has been found that the optimized rotor blade gives good performance both in terms of figure of merit and propulsive efficiency if compared with experimental data of existing rotor (ERICA tiltrotor) and propeller (NACA high-speed propeller).

    Practical implications

    – The optimization procedure described in this paper for the design of tiltrotor blades can be efficiently used for the aerodynamic design of helicopter rotors and aircraft propellers of all typology.

    Originality/value

    – In this work, advanced methodologies have been used for the aerodynamics design of a proprotor optimized for an aircraft which belongs to the innovative typology of high-performance tiltwing tiltrotor aircraft.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft


    Beteiligte:


    Erscheinungsdatum :

    2015-01-05


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Method of blade fold for tiltrotor aircraft

    KIZHAKKEPAT AMARJIT / SHIMEK GLENN ALAN | Europäisches Patentamt | 2020

    Freier Zugriff

    METHOD OF BLADE FOLD FOR TILTROTOR AIRCRAFT

    KIZHAKKEPAT AMARJIT / SHIMEK GLENN ALAN | Europäisches Patentamt | 2020

    Freier Zugriff

    Multi-Criteria Multi-Constrained Aerodynamic Optimization of Civil Tiltrotor Empennage Surfaces

    Battiston, Andrea / Ponza, Rita / Benini, Ernesto et al. | AIAA | 2021


    MULTI-CRITERIA MULTI-CONSTRAINED AERODYNAMIC OPTIMIZATION OF CIVIL TILTROTOR EMPENNAGE SURFACES

    Battiston, Andrea / Ponza, Rita / Benini, Ernesto et al. | TIBKAT | 2021


    MULTI-CRITERIA MULTI-CONSTRAINED AERODYNAMIC OPTIMIZATION OF CIVIL TILTROTOR EMPENNAGE SURFACES

    Battiston, Andrea / Ponza, Rita / Benini, Ernesto et al. | TIBKAT | 2021