The purpose of this paper is to attempt an aerospaceplane design with the objective of Low-Earth-Orbit-and-Return-to-Earth (LEOARTE) under the constraints of safety, low cost, reliability, low maintenance, aircraft-like operation and environmental compatibility. Along the same lines, a “sister” point-to-point flight on Earth Suborbital Aerospaceplane is proposed.

    Design/methodology/approach

    The LEOARTE aerospaceplane is based on a simple design, proven low risk technology, a small payload, an aerodynamic solution to re-entry heating, the high-speed phase of the outgoing flight taking place outside the atmosphere, a propulsion system comprising turbojet and rocket engines, an Air Collection and Enrichment System (ACES) and an appropriate mission profile.

    Findings

    It was found that a LEOARTE aerospaceplane design subject to the specified constraints with a cost as low as 950 United States Dollars (US$) per kilogram into Low Earth Orbit (LEO) might be feasible. As indicated by a case study, a LEOARTE aerospaceplane could lead, among other activities in space, to economically viable Space-Based Solar Power (SBSP). Its “sister” Suborbital aerospaceplane design could provide high-speed, point-to-point flights on the Earth.

    Practical implications

    The proposed LEOARTE aerospaceplane design renders space exploitation affordable and is much safer than ever before.

    Originality/value

    This paper provides an alternative approach to aerospaceplane design as a result of a new aerodynamically oriented Thermal Protection System (TPS) and a, perhaps, improved ACES. This approach might initiate widespread exploitation of space and offer a solution to the high-speed “air” transportation issue.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Earth-to-space and high-speed “air” transportation: an aerospaceplane design


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2019-01-09


    Format / Umfang :

    23 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch