The purpose of this paper is to predict the response and perforation of fibre metal laminates (FMLs) subjected to impact by projectiles at different velocities.

    Design/methodology/approach

    A finite element (FE) model is constructed in which recently proposed dynamic constitutive models for fibre reinforced plastic (FRP) laminates and metals are used. Moreover, a recently developed dynamic cohesive element constitutive model is also used to simulate the debonding between FRP laminates and metal sheets. The FE model is first validated against the test data for glass laminate aluminum reinforced epoxy (GLARE) both under dropped object loading and ballistic impact, then used to perform a parametric study on the influence of projectile nose shape on the perforation of FMLs.

    Findings

    It is found that the present model predicts well the response and perforation of GLARE subjected to impact loading in terms of load-time history, load-displacement curve, residual velocity and failure pattern. It is also found that projectile nose shape has a considerable effect on the perforation of GLARE FMLs and that the ballistic limit is the highest for a flat-ended projectile whilst for a conical-nosed missile the resistance to perforation is the least.

    Originality/value

    Recently developed constitutive models for FRPs and metals, together with cohesive element model which considers strain rate effect, are used in the FE model to predict the behaviour of FMLs struck by projectiles in a wider range of impact velocities; the present model is advantageous over such existing models as Johnson-Cook (JC) + Chang-Chang and JC (+BW) + MAT162 in terms of failure pattern though they produce similar results for residual velocity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting the response and perforation of fibre metal laminates subjected to projectile impact


    Beteiligte:
    Liu, Y.J. (Autor:in) / Wang, Z.H. (Autor:in) / Wen, H.M. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2021-09-06


    Format / Umfang :

    1 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Projectile perforation of multi-layered beams

    Marom, I. / Bodner, S.R. | Tema Archiv | 1979


    Fibre metal laminates

    Vlot, A. ;Gunnink, J. W. | British Library Conference Proceedings | 2001


    Impact response of thick glass fibre reinforced polyester laminates

    Zhou,G. / Davies,G.A. / Imperial College,London,GB | Kraftfahrwesen | 1995


    Fibre metal laminates : an introduction

    Vlot, Ad ;Gunnink, Jan Willem ;Vlot, Arie | TIBKAT | 2001