Abstract The soil carbon content and its relation to site characteristics are important in evaluating current local, regional, and global soil C storage and projecting future variations in response to climate change. In this study we analyzed the concentration of organic and inorganic carbon and their relationship with in situ climatic and geological characteristics in 485 samples of surface soil and 17 pits from the hyper-arid area and 51 samples with 2 pits from the arid–semiarid region from the Atacama Desert located in Peru and Chile. The soil organic carbon (SOC) in hyperarid soils ranged from 1.8 to 50.9μgC per g of soil for the 0–0.1m profile and from 1.8 to 125.2μgC per g of soil for the 0–1m profile. The analysis of climatic (temperature and precipitation), elevation, and some geologic characteristics (landforms) associated with hyper-arid soils explained partially the SOC variability. On the other hand, soil inorganic carbon (SIC) contents, in the form of carbonates, ranged from 200 to 1500μgC per g of soil for the 0–0.1m profile and from 200 to 3000μgC per g of soil for the 0–1.0m profile in the driest area. The largest accumulations of organic and inorganic carbon were found near to arid–semiarid areas. In addition, the elemental carbon concentrations show that the presence of other forms of inorganic carbon (e.g. graphite, etc.) was negligible in these hyperarid soils. Overall, the top 1m soil layer of hyperarid lands contains ∼11.6Tg of organic carbon and 344.6Tg of carbonate carbon. The total stored carbon was 30.8-fold the organic carbon alone. To our knowledge, this is the first study evaluating the total budget carbon on the surface and shallow subsurface on ∼160,000km2 of hyperarid soils.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Soil carbon distribution and site characteristics in hyper-arid soils of the Atacama Desert: A site with Mars-like soils



    Erschienen in:

    Advances in Space Research ; 50 , 1 ; 108-122


    Erscheinungsdatum :

    2012-03-02


    Format / Umfang :

    15 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch