Highlights Zero carbon fuels are often seen as the best way to reduce maritime GHG emissions. The zero carbon fuels in focus for this study are E-fuels and Synthetic E-fuels. The fuels are evaluated on cost, energy use and GHG emissions Well-to-Wake. E-fuels will double or triple the maritime sector's energy consumption Well-to-Wake. A narrow, maritime focus is counter-productive to a global decarbonization strategy.

    Abstract Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reduction of maritime GHG emissions and the potential role of E-fuels


    Beteiligte:


    Erscheinungsdatum :

    2021-01-01




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch