Abstract In this study, an inclined injection system with a cavity and grooves arranged in series is developed to enhance the supersonic mixing in a scramjet combustor. Three-dimensional steady Reynolds-averaged Navier–Stokes equations, the two-equation shear stress transport k-ω model, and the finite-rate/no turbulence-chemistry interaction model are used to simulate the flow field structures with and without grooves at different inclination angles. The numerical method used in the study has been verified using experimental data from the open literature, and the static wall pressure distribution of the numerical simulation is in good agreement with the experimental data. The numerical results reveal that the grooved configuration has a significant influence on the flow field structure. The downstream streamline of the structure with grooves is more turbulent and produces more streamwise vortices because the geometry of the grooves enhances the shear effect between the vortex and the high-speed incoming flow. In the case of the grooved configuration, the mixing coefficient at the fuel orifices is slightly lower, but the fuel mixing effect in the downstream is enhanced and gradually exceeds the grooveless configuration. Moreover, the grooved configuration can obtain the best mixing coefficient at a jet angle of 30°. The grooved configuration has a greater stagnation pressure loss than the grooveless configuration.

    Highlights An inclined injection system with a cavity and grooves arranged in series is proposed. Influences of inclined injection angle and cavity configuration on the flow field properties are evaluated. Mixing performance is found to be better in a cavity-based supersonic combustor with grooves. The grooved configuration does not produce significant stagnation pressure loss.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical investigation of cavity-induced enhanced supersonic mixing with inclined injection strategies


    Beteiligte:
    Jian, Dai (Autor:in) / Qiuru, Zuo (Autor:in) / Chao, Huang (Autor:in)

    Erschienen in:

    Acta Astronautica ; 180 ; 630-638


    Erscheinungsdatum :

    2021-01-05


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Experimental investigation of inclined hydrogen injection into a supersonic flow

    Arai, Takakage / Fukuzoe, Hideo / Miura, Junji et al. | AIAA | 1999


    Numerical Simulation of Supersonic Mixing Enhancement with Porous Cavity

    Yaga, Minoru / Tabata, Shinsaku / Doerffer, Piotr et al. | AIAA | 2003



    Numerical Predictions of Mixing in a Supersonic Cavity Flameholder

    Peterson, David M. / Hassan, Ezeldin A. | AIAA | 2016