Graphical abstract Display Omitted

    Highlights CAV BEV SUV and ICEV van show increased life cycle GHG emissions and primary energy use over non-CAVs. Updated model () shows net emissions increase compared to original net decrease. Computing requirements are main contributor to CAV BEV & ICEV subsystem life cycle GHG emissions. CAV technology with electrification and grid decarbonization reduce life cycle GHG emissions 31% Penetration of CAVs is key to achieving maximum impact from expected direct effects.

    Abstract As technological advancements progress, the automotive industry is getting closer to producing Level 4 connected and automated vehicles (CAVs). Market trends show personal vehicle sales moving towards sport utility vehicles (SUVs) and increasing use of ridesourcing services. We conducted a life cycle assessment (LCA) of Level 4 CAV subsystem components integrated into battery electric vehicle (BEV SUV) and internal combustion engine vehicle (ICEV van) platforms. Vehicle lifetime was modeled based on deployment as an automated taxi, incorporating a standby mode to account for continuous connectivity. This study explores impacts of weight, drag, and subsystem electricity demand relative to benefits of eco-driving, platooning, and intersection connectivity at the vehicle system level. A CAV BEV coupled with a low carbon intensity grid (0.08 kg CO2e/kWh) could see a 31% decrease in life cycle greenhouse gas (GHG) emissions while a CAV BEV with high computing power requirements (4000 W) could see an increase in GHG emissions of 34% compared with the base case. The net result for the base case (500 W computer power, 14% operational efficiency improvement, 45% highway driving) CAV shows an increase in primary energy use and GHG emissions (2.7%, 2.7% for BEV; 1.3%, 1.1% for ICEV) compared with non-CAV platforms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Life cycle greenhouse gas impacts of a connected and automated SUV and van


    Beteiligte:


    Erscheinungsdatum :

    2020-01-01




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Carsharing’s life-cycle impacts on energy use and greenhouse gas emissions

    Chen, T. Donna / Kockelman, Kara M. | Elsevier | 2016



    Ship Life Cycle Greenhouse Gas Emissions

    Chatzinikolaou, Stefanos / Ventikos, Nikolaos / Bilgili, Levent et al. | Springer Verlag | 2016



    Impacts of Platooning of Connected Automated Vehicles on Highways

    Martinez-Diaz, Margarita / Al-Haddad, Christelle / Soriguera, Francesc et al. | IEEE | 2024

    Freier Zugriff