Abstract Airport surface operations, such as off-block control, taxi routing, and runway sequencing, are typically confined to a fixed network topology with given origin–destination (O-D) pairs for departures and arrivals. Reconfiguring the O-D distribution of flights by actively assigning their aprons and runways is a potentially effective measure to maximize the utilization of network capacity. To date this has not been investigated in the literature due to its complexity involving operational constraints, assignment rules, and different stakeholders. This paper demonstrates the significant potential of O-D reconfiguration in improving surface network efficiency by proposing a joint apron-runway assignment framework for pre-tactical operations. This is underpinned by a comprehensive review of apron and runway assignment rules, including constraints and preferences, and an elaborated optimization scheme that encompasses lexicographic and iterative approaches along with temporal buffers to absorb uncertainties in pre-tactical operations. The proposed apron-runway assignment is implemented and assessed in a case study at Beijing Capital International Airport. An airport cellular automata simulator is employed for quantitative evaluation, and qualitative assessment is based on interviews with subject matter experts. Compared to the current operations, the proposed apron-runway assignment is very promising, with reductions in total taxiing distance, average taxiing time, taxiing conflicts, runway queuing time, and fuel consumption by 15.5% (), 6.2%, 19.8%, 17.6% () and 6.6% () respectively; gated assignment is increased by 11.8% (). Importantly, these benefits remain robust to unforeseen flight delays, as demonstrated in a sensitivity analysis.

    Highlights A joint apron-runway assignment framework for airport surface operations is proposed. The optimization involves complex apron and runway assignment rules and preferences. We design an iterative apron-runway assignment method with lexicographic structure. The method is suitable for strategic or pre-tactical planning. A case study in PEK confirms the benefits of the proposed design in a variety of KPIs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint apron-runway assignment for airport surface operations


    Beteiligte:


    Erscheinungsdatum :

    2021-12-14


    Format / Umfang :

    25 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch