Abstract Path planning is one of the key technologies in unmanned aerial systems. The path-planning algorithm for UAVs in this study incorporates a three-dimensional obstacle model, addressing the limitations of existing research that primarily focuses on the two-dimensional plane. This approach elevates traditional two-dimensional obstacle constraints to a three-dimensional space, fulfilling the requirements for precise obstacle avoidance. Utilizing B-spline curves, an obstacle boundary model is proposed, which, in combination with an improved artificial potential field accounting for localized self-locking oscillations, achieves smooth path planning for obstacle avoidance from the starting point to the destination. The simulation results show the effectiveness of this method in collision-free path planning within three-dimensional environments containing static single or multiple obstacles. At the points of maximum curvature in the two-dimensional coordinate system, the path planned by the proposed algorithm exhibits a smoothness improvement of 68 % and 98 %, respectively, as compared to the traditional artificial potential field algorithm with the equivalent three-dimensional obstacle model and the tangent point method. The proposed algorithm enables drones to achieve precise obstacle avoidance along surfaces, generating smoother collision-free flight paths in a shorter period of time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A path planning algorithm for three-dimensional collision avoidance based on potential field and B-spline boundary curve


    Beteiligte:
    Liu, Mingjie (Autor:in) / Zhang, Hongxin (Autor:in) / Yang, Jian (Autor:in) / Zhang, Tiezhu (Autor:in) / Zhang, Caihong (Autor:in) / Bo, Lan (Autor:in)


    Erscheinungsdatum :

    2023-11-16




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Collision avoidance path planning of tourist ship based on DDPG algorithm

    Yi ZHOU / Chuanping YUAN / Haicheng XIE et al. | DOAJ | 2021

    Freier Zugriff


    Sampling-Based Path Planning for UAV Collision Avoidance

    Lin, Yucong / Saripalli, Srikanth | IEEE | 2017