Highlights Identifies Adaptive Signal Control System effects on crash severity. Uses the random-parameter ordered probit model with observed heterogeneity. Accounts for both observed and unobserved heterogeneity. Reveals the association of Adaptive Signal Control System with lower crash severity. Provides supporting guidelines for Adaptive Signal Control System implementation.

    Abstract By handling conflicting traffic movements and establishing dynamic coordination between intersections in real-time, the Adaptive Signal Control System (ASCS) can potentially improve the operation and safety of signalized intersections on a corridor. This study identifies the hierarchical effects of ASCS on the crash severity by exploring the heterogeneous effect of ASCS on the crash severity. Four different random-parameter ordered regression models (two ordered probit models, and two ordered logit models) are developed and compared. The analysis reveals that the random-parameter ordered probit and logit models (ROP and ROL) with observed heterogeneity perform better than the random-parameter ordered probit and logit models (RP and RL) without observed heterogeneity in terms of the Akaike information criteria and the goodness of fit of the model. The ROP model performs better than the ROL model in terms of classification model performance measures. The ROP model enables parameters (i.e., the coefficients of the explanatory variables) to vary as a function of explanatory variables as well as across observations, thus accounting for both observed (captured by available explanatory variables) and unobserved (not captured by available explanatory variables) heterogeneity. The analysis reveals that the presence of ASCS is associated with lower crash severity. In this study, observed heterogeneity of ASCS effects on the crash severity is captured by variables related to the intersection and corridor features. Other contributing factors besides ASCS, such as annual average daily traffic, speed limit, lighting, peak period, crash type (rear-end, angle), and pedestrian involvements, are also associated with the probability of crash severity. Unobserved heterogeneity of the effect of angle crash type on the crash severity is found to exist across the observations. The findings of this research have practical implications for establishing ASCS implementation guidelines in lowering the probability of higher crash severity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigating hierarchical effects of adaptive signal control system on crash severity using random-parameter ordered regression models incorporating observed heterogeneity


    Beteiligte:
    Jin, Weimin (Autor:in) / Chowdhury, Mashrur (Autor:in) / Salek, M Sabbir (Autor:in) / Khan, Sakib Mahmud (Autor:in) / Gerard, Patrick (Autor:in)


    Erscheinungsdatum :

    2020-01-01




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch