Abstract We study the directional stability of rigid and deformable spinning satellites in terms of two attitude angles. The linearized attitude motion of a free system about an assumed uniform-spin reference solution leads to a generic MGK system when the satellite is rigid or deformable. In terms of Lyapunov’s stability theory, we investigate the stability with respect to a subset of the variables. For a rigid body, the MGK system is 6-dimensional, i.e., 3 rotational and 3 translational variables. When flexible parts are present the system can have any arbitrary dimension. The 2×2 McIntyre–Myiagi stability matrix gives sufficient conditions for the attitude stability. A further development of this method has led to the Equivalent Rigid Body method. We propose an alternative practical method to establish sufficiency conditions for directional stability by using the Frobenius–Schur reduction formula. As practical applications we discuss a spinning satellite augmented with a spring–mass system and a rigid body appended with two cables and tip masses. In practice, the attitude stability must also be investigated when the spinning satellite is subject to a constant axial thrust. The generic format becomes MGKN as the thrust is a follower force. For a perfectly aligned thrust along the spin axis, Lyapunov’s indirect method remains valid also when deformable parts are present. We illustrate this case with an apogee motor burn in the presence of slag. When the thrust is not on the spin axis or not pointing parallel to the spin axis, the uniform-spin reference motion does not exist and none of the previous methods is applicable. In this case, the linearization may be performed about the initial state. Even when the linearized system has bounded solutions, the non-linear system can be unstable in general. We illustrate this situation by an instability that actually happened in-flight during a station-keeping maneuver of ESA’s GEOS-I satellite in 1979.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On the stability of spinning satellites


    Beteiligte:

    Erschienen in:

    Acta Astronautica ; 68 , 7-8 ; 778-789


    Erscheinungsdatum :

    2010-08-14


    Format / Umfang :

    12 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Attitude stability of spinning satellites

    Caughey, T. K. | NTRS | 1980


    On the stability of spinning satellites

    Janssens, Frank L. | Online Contents | 2011


    Spinning Satellites

    Landgraf, Markus | TIB AV-Portal | 2015


    Recovery of spinning satellites

    Coppey, J. M. / Mahaffey, W. R. | NTRS | 1977