Abstract Following the current trend towards the lunar exploration and habitation, this study focuses on the development of efficient arch forms to be adopted for future long-span shielding structures on the lunar surface. More specifically, the static behaviour of the optimised, varying-thickness arches (VTAs), produced by a previously proposed iterative form-finding algorithm based on limit thrust-line analysis under gravitational and seismic loading is examined herein. These form-found arches are assumed to be constructed by laser-sintered additive manufactured lunar regolith. This paper starts with the visualisation of the limit thrust line using finite element analysis (FEA) on constant-thickness arches (CTAs). Subsequently, it presents the results from FEA on both VTAs and CTAs where it is observed that the original VTAs need to be geometrically enhanced, by thickening certain weak areas of their cross-section in order to minimise the local principal stresses and strain energy. The work proceeds with the quantification of the efficiency of the enhanced VTAs against their CTA counterparts, in both terrestrial and lunar gravitational environments. The most efficient enhanced VTAs are selected and recognised as the best structural forms for either terrestrial or lunar applications among all the arches examined in this research. Eventually, the real capacity of those most efficient arches against lateral loading is attested by means of pushover analysis. As expected, it is found that the geometric enhancement has significantly increased their structural capacity.

    Highlights Enhanced varying-thickness arches (EVTAs) are more resilient than simple VTAs for a given lateral load. EVTAs are structurally more efficient than their CTA counterparts in partial gravity environments. Terrestrial EVTAs experience material failure before reaching their design load. Lunar EVTAs can withstand up to 90% more load than their initial design load.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Structural efficiency of varying-thickness regolith-based lunar arches against inertial loading


    Beteiligte:
    Kalapodis, N. (Autor:in) / Málaga-Chuquitaype, C. (Autor:in) / Kampas, G. (Autor:in)

    Erschienen in:

    Acta Astronautica ; 191 ; 438-450


    Erscheinungsdatum :

    2021-11-22


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Lunar Regolith

    Gies, J. V. / American Society for Civil Engineers; Aerospace Division | British Library Conference Proceedings | 1996


    Consolidating Lunar Regolith

    Cayden Doyle / Sheila A Thibeault / Jin Ho Kang et al. | NTRS


    Consolidating Lunar Regolith

    C. Doyle / S. A. Thibeault / J. H. Kang et al. | NTIS | 2021


    Lunar Regolith Excavation Competition

    Liles, Cassandra | NTRS | 2009