Abstract A cluster of gridded microwave discharge ion thrusters μ10 contributed to the success of the deep space exploration missions of the Japanese asteroid explorers Hayabusa and Hayabusa2. To meet the demands of the next mission DESTINY+, the maximum ion beam current was increased to 200 mA from the 170 mA used in Hayabusa2 by redesigning the magnetic field and grid configuration. However, this thruster exhibited the plasma hysteresis caused by a high-voltage breakdown. Specifically, the ion beam current (i.e. thrust) has two modes at a given propellant flow rate, namely high- and low-current modes. In nominal operation, the thruster operates in high-current mode. However, once a high-voltage breakdown occurs, the ion beam current transitions to and remains in low-current mode, which significantly decreases thrust efficiency. In this paper, based on an investigation of the physical mechanism that causes the hysteresis, we proposed a recovery method to return the thruster operation to high-current mode. In the investigation, we focused on the plasma mode transition, where plasma is generated inside the waveguide. We experimentally investigated the hysteresis by varying the grid configuration and the waveguide geometries while maintaining the magnetic field. The results show that the neutral density and plasma conditions inside the waveguide are strongly related to the hysteresis, which indicates that the main cause of the hysteresis is plasma generation inside the waveguide.

    Highlights Enhanced thrusters have plasma hysteresis caused by a high-voltage breakdown. The hysteresis is caused by plasma generation and extinction inside the waveguide. Temporarily gas stop is effective for the recycling after high-voltage breaks down. The hysteresis depends on the thruster geometry even with the same magnetic field. Ion optics design is one of the most important parameters for the hysteresis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Plasma hysteresis caused by high-voltage breakdown in gridded microwave discharge ion thruster μ10


    Beteiligte:
    Yamashita, Yusuke (Autor:in) / Tsukizaki, Ryudo (Autor:in) / Daiki, Koda (Autor:in) / Tani, Yoshitaka (Autor:in) / Shirakawa, Ryo (Autor:in) / Hattori, Kana (Autor:in) / Nishiyama, Kazutaka (Autor:in)

    Erschienen in:

    Acta Astronautica ; 185 ; 179-187


    Erscheinungsdatum :

    2021-05-02


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Plasma Hysteresis of Alternative Propellants in ECR Gridded Ion Thruster

    Tompkins, Joshua / Dutta, Richeek / Rovey, Joshua L. | AIAA | 2024


    External Discharge Plasma Thruster

    Karadag, Burak / Cho, Shinatora / Funaki, Ikkoh et al. | AIAA | 2018


    Deployable gridded ion thruster

    WALKER II MITCHELL L R / CHAN CHEONG | Europäisches Patentamt | 2020

    Freier Zugriff

    Development of Small-Scale Ion Thruster Utilizing Microwave Discharge Plasma

    Takao, Y. / Miyamoto, T. / Kataharada, H. et al. | British Library Conference Proceedings | 2004


    DEPLOYABLE GRIDDED ION THRUSTER

    WALKER II MITCHELL L R / CHAN CHEONG | Europäisches Patentamt | 2019

    Freier Zugriff