Highlight • Compared to actuated control, the cooperative vehicle intersection control system demonstrated. • 82–100% of delay time reductions. • 16–20% of total travel time improvements. • 30–87% of rear-end crash events. • 36% and 37% of air quality and fuel consumption improvements, respectively.

    Abstract Connected Vehicle (CV) technology, formerly known as IntelliDrive, has emerged and is expected to provide unprecedented improvements in mobility. A recent study developed a cooperative vehicle intersection control (CVIC) algorithm for an urban intersection that does not require a stop-and-go style traffic signal and demonstrated significant mobility improvements over an actuated traffic signal control. This paper expanded the algorithm and implemented it to a corridor consisting of multiple intersections. In addition, this paper investigated sustainability aspects of the CVIC system for an urban traffic control system by applying surrogate safety assessment model (SSAM) and VT-Micro model to measure safety and environmental impacts, respectively. A simulation-based case study was performed on a hypothetical arterial consisting of four intersections with eight traffic congestion cases covering low to high volume conditions. When compared to the coordinated actuated control, the CVIC system dramatically reduced the total delay times for the volume cases considered (i.e., from 82% to 100% delay time savings observed). The CVIC system also reduced the number of rear-end crash events by 30–87% for the volume cases considered, indicating that safer driving conditions would be achieved with the CVIC system. Finally, the CVIC system contributed to improving the air quality (i.e., 12–36% CO2 emission reduction) and saving fuel consumptions (11–37% of gas saving).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sustainability assessments of cooperative vehicle intersection control at an urban corridor


    Beteiligte:


    Erscheinungsdatum :

    2012-09-06


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Multi-vehicle cooperative control method in urban non-signal-control multi-intersection environment

    LUO YUGONG / YU JIE / JIANG FACHAO et al. | Europäisches Patentamt | 2020

    Freier Zugriff


    Intersection signal-vehicle trajectory cooperative control method in vehicle-road cooperative environment

    YANG XIAOGUANG / LONG KEKE / MA CHENGYUAN et al. | Europäisches Patentamt | 2020

    Freier Zugriff