Abstract Dynamic wireless charging facilities deployed on the road network offer an effective charging method to alleviate the electric vehicle users’ range anxiety and thus facilitate the promotion of electric vehicles. The main benefit of wireless charging is that it extends EV’s driving range by enabling EV en-route recharging, which consequently reduces the required battery size for EVs. Basically, given densely distributed wireless charging lanes on the road network, smaller and less expensive batteries would be able to meet the travel demand. From the societal point of view, the reduction of battery size/capacity is capable of justifying more construction of wireless charging lanes. While previous research works on optimal deployment of wireless charging facilities ignored this benefit, this study aims to explicitly consider the tradeoff between the costs of building recharging infrastructure and manufacturing batteries from the societal point of view in the optimal configuration of dynamic wireless charging facilities. The problem is formulated into a bi-level programming model, wherein the upper-level model seeks to minimize the total social cost, and the lower-level model captures EV drivers’ choices in terms of battery size, travel route, and driving and charging behavior. To handle the problem, we first relax the path cost constraint and apply the linearization techniques to reformulate the problem into a mixed-integer linear programming, from which a lower bound of the problem can be obtained. An efficient surrogate optimization algorithm is then developed to solve the problem.

    Highlights Propose an integrated wireless charging facilities deployment model for the general transport networks. Take the choice of battery size into consideration. A mass-related energy consumption rate is introduced. Incorporate the road capacity reduction coefficient to capture the adverse effects resulting from wireless charging. Integrate the path usability into the calculation of path cost together with the travel time cost and charging cost. Propose a surrogate optimization approach to solve the problem.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal configuration of dynamic wireless charging facilities considering electric vehicle battery capacity


    Beteiligte:
    Liu, Shaojun (Autor:in) / Wang, David Z.W. (Autor:in) / Tian, Qingyun (Autor:in) / Lin, Yun Hui (Autor:in)


    Erscheinungsdatum :

    2023-11-23




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Building storage battery configuration method considering charging load of electric vehicle

    DING YAN / YAN RUI / WANG QIAOCHU | Europäisches Patentamt | 2021

    Freier Zugriff

    Optimal Deployment of Dynamic Wireless Charging Facilities for an Electric Bus System

    Liu, Zhaocai / Song, Ziqi / He, Yi | Transportation Research Record | 2017


    Service area electric vehicle charging station configuration method considering expressway network

    WU ZHI / LI AO / GU WEI et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Coordinated control method and system considering optimal charging of electric vehicle battery swap station

    WANG YONG / LUAN LE / XU ZHONG et al. | Europäisches Patentamt | 2021

    Freier Zugriff