Abstract The concept of fast solar sail rendezvous missions to near Earth asteroids is presented by considering the hyperbolic launch excess velocity as a design parameter. After introducing an initial constraint on the hyperbolic excess velocity, a time optimal control framework is derived and solved by using an indirect method. The coplanar circular orbit rendezvous scenario is investigated first to evaluate the variational trend of the transfer time with respect to different hyperbolic excess velocities and solar sail characteristic accelerations. The influence of the asteroid orbital inclination and eccentricity on the transfer time is studied in a parametric way. The optimal direction and magnitude of the hyperbolic excess velocity are identified via numerical simulations. The found results for coplanar circular scenarios are compared in terms of fuel consumption to the corresponding bi-impulsive transfer of the same flight time, but without using a solar sail. The fuel consumption tradeoff between the required hyperbolic excess velocity and the achievable flight time is discussed. The required total launch mass for a particular solar sail is derived in analytical form. A practical mission application is proposed to rendezvous with the asteroid 99942 Apophis by using a solar sail in combination with the provided hyperbolic excess velocity.

    Highlights The hyperbolic excess velocity was considered for solar sail rendezvous missions. We identified the optimal direction of the departure hyperbolic excess velocity. We examined mission scenarios for circular, elliptical and inclined asteroid orbits. A tradeoff between the launch mass and the flight time was analyzed. Practical trajectory design was proposed for the Apophis rendezvous mission.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fast solar sail rendezvous mission to near Earth asteroids


    Beteiligte:
    Zeng, Xiangyuan (Autor:in) / Gong, Shengping (Autor:in) / Li, Junfeng (Autor:in)

    Erschienen in:

    Acta Astronautica ; 105 , 1 ; 40-56


    Erscheinungsdatum :

    2014-08-21


    Format / Umfang :

    17 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fast solar sail rendezvous mission to near Earth asteroids

    Zeng, Xiangyuan | Online Contents | 2014


    Solar-Sail Trajectory Design for a Multiple Near-Earth-Asteroid Rendezvous Mission

    Peloni, Alessandro / Ceriotti, Matteo / Dachwald, Bernd | AIAA | 2016




    A multiple-rendezvous, sample-return mission to two near-Earth asteroids

    Duffard, R. / Kumar, K. / Pirrotta, S. et al. | Elsevier | 2011