Abstract Micro-cathode arc thrusters (μCATs) are space propulsion options suitable for microspacecraft, and have recently attracted much attention because of their low electrical power requirements and simple, compact propellant systems. The plasma ionization process, however, is not currently well understood. In this study, a μCAT prototype was designed with the use of different specific materials for each component, enabling the study of the ionization process from the emissive light of excited and ionized states from different elements. ICCD emission spectroscopy and scanning monochromator measurements are conducted inside the electrode channel of a μCAT with a coaxial configuration. The excited state atomic spectral results and ionization state spectral results give us a comprehensive understanding of the behavior of neutral particles and ions during the discharge process of the μCAT. The ionization sequence follows in the order of C+, Al+, Ti+, Cu+, and Ti2+. From the duration of the spectral lines, C I has the shortest duration (16.9 μs), which shows that the ablation of the conductive film is mainly concentrated during the first half of the discharge, while anode and cathode ionization occur over the entire discharge duration. Additionally, Al+ ionization is observed during the discharge process, showing that part of the discharge energy is expended in ionizing the thruster outer shell, resulting in efficiency loss. An ionization ratio of k is proposed in this work to represent the relative ionization of the conductive film and cathode material, aiding us in determining the optimal operation conditions for lifetime extension.

    Highlights A μCAT prototype with different materials of each component is designed. ICCD emission spectroscopy and scanning monochromator measurements are conducted inside a μCAT. The impact of discharge energy and magnetic field strength on the ionization process is investigated. An ionization ratio k is proposed to represent the relative ionization of the conductive film and cathode material.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Investigation on plasma ionization process of a micro-cathode arc thruster


    Beteiligte:
    Zhang, Zhe (Autor:in) / Yu, Miaosen (Autor:in) / Ali, Muhammad Rawahid (Autor:in) / Liu, Xiangyang (Autor:in) / Wang, Ningfei (Autor:in)

    Erschienen in:

    Acta Astronautica ; 216 ; 143-151


    Erscheinungsdatum :

    2024-01-04


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Hollow Cathode Micro Thruster

    Katz, Ira / Davis, V. / Mandell, M. et al. | AIAA | 2000


    MICRO-CATHODE ARC THRUSTER

    KEIDAR MICHAEL / TEEL GEORGE / HURLEY SAMANTHA A | Europäisches Patentamt | 2017

    Freier Zugriff

    Micro-cathode arc thruster

    KEIDAR MICHAEL / TEEL GEORGE / HURLEY SAMANTHA A | Europäisches Patentamt | 2020

    Freier Zugriff

    MODULAR MICRO-CATHODE ARC THRUSTER

    KEIDAR MICHAEL / TEEL GEORGE / HURLEY SAMANTHA A et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Modular micro-cathode arc thruster

    KEIDAR MICHAEL / TEEL GEORGE / HURLEY SAMANTHA A et al. | Europäisches Patentamt | 2022

    Freier Zugriff