Abstract Surface roughness and microscopic morphology are key factors influencing oxygen catalytic recombination. Titanium is extensively used as a material for metallic thermal protection systems (TPS) in the design of hypersonic and reusable launch vehicles. In this study, the effect of titanium surface roughness on oxygen catalytic recombination is experimentally investigated. The efficiency of the oxygen recombination reaction is determined by evaluating the measured heat-transfer rates while considering the existing theory of binary gas mixtures. The surface of the test models was coated with either titanium or silicon dioxide, and for each model, four different levels of surface roughness were prepared. It is shown that, with an increase in surface roughness, oxygen recombination efficiency increased on both the titanium and silicon dioxide surfaces. Surface topography was characterized in terms of the roughness factor (Ф = A/Ag), i.e., the ratio of the actual surface area (A) to the projected surface area (Ag) using an atomic force microscope. The relationship between the roughness factor and oxygen recombination efficiency was examined.

    Highlights The effect of titanium surface roughness on oxygen catalytic recombination is experimentally investigated. With an increase in the level of surface roughness, the oxygen catalytic efficiency is increased. The silicon dioxide surface is considered for a comparison. Oxygen catalytic activity is more sensitive to variation in roughness on Ti-coated surface than on SiO2-coated surface.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effect of titanium surface roughness on oxygen catalytic recombination in a shock tube


    Beteiligte:
    Kim, Ikhyun (Autor:in) / Yang, Yosheph (Autor:in) / Park, Gisu (Autor:in)

    Erschienen in:

    Acta Astronautica ; 166 ; 260-269


    Erscheinungsdatum :

    2019-10-14


    Format / Umfang :

    10 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Catalytic recombination assessment on carbon in dissociated shock tube flow

    Kim, Ikhyun / Yang, Yosheph / Park, Gisu et al. | Elsevier | 2021



    Effect of Catalytic Surface on Oxidation of Methane in a High-Pressure Shock Tube

    Urso, Justin J. / Kinney, Cory / Pierro, Michael et al. | AIAA | 2023



    Recombination Kinetics of Oxygen Atoms at Fairly Catalytic Surfaces

    Utku, E. / Hassouni, K. / Cavadias, S. et al. | British Library Conference Proceedings | 1994