Abstract The orbital propagation of large sets of initial conditions under high accuracy requirements is currently a bottleneck in the development of space missions, e.g. for planetary protection compliance analyses. The proposed approach can include any force source in the dynamical model through efficient Picard–Chebyshev (PC) numerical simulations. A two-level augmentation of the integration scheme is proposed, to run an arbitrary number of simulations within the same algorithm call, fully exploiting high performance and GPU (Graphics Processing Units) computing facilities. The performances obtained with implementation in C and NVIDIA® CUDA® programming languages are shown, on a test case taken from the optimization of a Solar Orbiter-like first resonant phase with Venus.

    Highlights Augmenting the Picard–Chebyshev scheme builds an efficient GPU computing-suitable algorithm. The fixed-point nature allows to efficiently share ephemeris data. A 6-year-old low-end GPU already outperforms a 40-cores CPU parallelization. Modern and low-cost GPUs enable near real-time and high-precision propagations of large sets of initial conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    GPU-based high-precision orbital propagation of large sets of initial conditions through Picard–Chebyshev augmentation


    Beteiligte:

    Erschienen in:

    Acta Astronautica ; 204 ; 239-252


    Erscheinungsdatum :

    2022-12-24


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Picard Iteration, Chebyshev Polynomials and Chebyshev-Picard Methods: Application in Astrodynamics

    Junkins, John L. / Bani Younes, Ahmad / Woollands, Robyn M. et al. | Springer Verlag | 2013



    Modified Chebyshev-Picard Iteration Methods for Orbit Propagation

    Bai, Xiaoli / Junkins, John L. | Springer Verlag | 2011