Abstract Metallic particles being added to rocket fuel contribute to increasing its energetic efficiency. In the present paper, the physical model of aluminum particle combustion is developed. The model takes into account accumulation and distribution of condensed oxide in the flame, which is divided into characteristic zones at that. The thermodynamic analysis of flame parameters for a single particle burning in medium «79% Ar + 21% O 2» was carried out. The mathematical description of the model is presented, which lets to calculate dependencies of temperature and oxidizing components concentration on relative flame radius R which is ratio of inner flame points coordinate R to current particle radius R 0. The calculation method is based on combined use of heat and oxidizer flows balance and on data of equilibrium thermodynamic analysis of flame zone. The calculation of the mentioned dependencies were carried out for aluminium particles 220 μm (220 μm) in diameter at ambient environment pressure equal 0,1 MPa. The following radii were determined: radius of stoichiometry of metal and oxygen flows, radius of maximum temperature value reach and that of flame boundary. New parameter η is introduced which determines degree of metal transformation into condensed oxide and depends on thermodynamics parameters of flames (on temperature and oxidizing components concentration). The maximum of oxide particles distribution is established to be in zone of 5,5 ≤ R/R 0 < 6,6, at that η value reaches 90%. The results of present work are compared with data of theoretical and experimental investigations of other authors. The accountability of equilibrium thermodynamics is shown to be mandatory part of models of aluminum particles combustion.

    Highlights Aluminium fuel combustion. Mathematical modeling of powdery metal aluminium fuel burning. Combustion of aluminium particles. Intrachamber processes of unit on aluminium powdery metal fuel. Study of aluminium particle flame structure.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of combustion peculiarities in flame zone of aluminium particle


    Beteiligte:
    Kriukov, A. Yu (Autor:in) / Malinin, V.I. (Autor:in)

    Erschienen in:

    Acta Astronautica ; 180 ; 266-272


    Erscheinungsdatum :

    2020-12-20


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Flame temperature measurement of microwave-assisted aluminum particle combustion

    Zhu, Keke / Barkley, Stuart J. / Sippel, Travis R. et al. | AIAA | 2019


    Detailed Studies on the Flame Structure of Aluminum Particle Combustion

    Brill, Thomas B. / Ren, Wu-Zhen / Yang, Vigor | AIAA | 2000



    The Peculiarities of Hydrogen Combustion in Model Scramjet Combustors

    Strokin, V. / Grachov, V. / International Society for Air Breathing Engines; United States Committee | British Library Conference Proceedings | 1997


    Peculiarities of the diffusion zone formation of the platinum-titanium compound

    Anatoliy Sanin / Igor Mamchur / Yevhen Dzhur et al. | DOAJ | 2022

    Freier Zugriff