Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2) in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling


    Beteiligte:
    Mohamed Sellam (Autor:in) / Amer Chpoun (Autor:in)


    Erscheinungsdatum :

    2015




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Numerical Simulation of a Reactive Flow in an Overexpanded Nozzle

    Sainte-Rose, B. / Bertier, N. / Dupoirieux, F. et al. | British Library Conference Proceedings | 2009


    Mach Reflection from Overexpanded Nozzle Flows

    W.L. CHOW AND I.S. CHANG | AIAA | 1972


    Mach reflection from overexpanded nozzle flows.

    Chow, W. L. / Chang, I. S. | NTRS | 1972


    Shock-Induced Flow Separation in an Overexpanded Supersonic Planar Nozzle

    Zebiri, B. / Piquet, A. / Hadjadj, A. et al. | AIAA | 2020


    Unsteadiness in Supersonic Free Shock Separation in Overexpanded Flows

    Demni, Naima / Piponniau, Sébastien / Dupont, Pierre | TIBKAT | 2022