The effective forecast of container volumes can provide decision support for port scheduling and operating. In this work, by deep learning the historical dataset, the long short-term memory (LSTM) recurrent neural network (RNN) is used to predict daily volumes of containers which will enter the storage yard. The raw dataset of daily container volumes in a certain port is chosen as the training set and preprocessed with box plot. Then the LSTM model is established with Python and Tensorflow framework. The comparison between LSTM and other prediction methods like ARIMA model and BP neural network is also provided in this study, and the prediction gap of LSTM is lower than other methods. It is promising that the proposed LSTM is helpful to predict the daily volumes of containers.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    The Daily Container Volumes Prediction of Storage Yard in Port with Long Short-Term Memory Recurrent Neural Network


    Beteiligte:
    Yinping Gao (Autor:in) / Daofang Chang (Autor:in) / Ting Fang (Autor:in) / Yiqun Fan (Autor:in)


    Erscheinungsdatum :

    2019




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Real-Time Crash Risk Prediction using Long Short-Term Memory Recurrent Neural Network

    Yuan, Jinghui / Abdel-Aty, Mohamed / Gong, Yaobang et al. | Transportation Research Record | 2019



    Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network

    Yeon, Kyuhwan / Min, Kyunghan / Shin, Jaewook et al. | Online Contents | 2019


    Ego-Vehicle Speed Prediction Using a Long Short-Term Memory Based Recurrent Neural Network

    Yeon, Kyuhwan / Min, Kyunghan / Shin, Jaewook et al. | Springer Verlag | 2019


    Prediction of Pedestrian Crossing Intentions at Intersections Based on Long Short-Term Memory Recurrent Neural Network

    Zhang, Shile / Abdel-Aty, Mohamed / Yuan, Jinghui et al. | Transportation Research Record | 2020