Floating production storage and offloading (FPSO) facilities are used at most of the offshore oil fields worldwide. FPSO usage is expected to grow as oil fields move to deeper water, thus requiring the reliability and stability of mooring wires and risers in extreme environmental conditions. Except for the case of predictable attack angles of external loadings, FPSO facilities with turret single point mooring (SPM) systems are in general use. There are two types of turret systems: permanent systems and disconnectable turret mooring systems. Extreme environment criteria for permanent moorings are usually based on a 100-year return period event. It is common to use two or three environments including the 100-year wave with associated wind and current, and the 100-year wind with associated waves and current. When fitted with a disconnectable turret mooring system, FPSOs can be used in areas where it is desirable to remove the production unit from the field temporarily to prevent exposure to extreme events such as cyclones or large icebergs. Static and dynamic mooring analyses were performed to evaluate the stability of a spider buoy after disconnection from a turret during cyclone environmental conditions.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Static and dynamic mooring analysis – Stability of floating production storage and offloading (FPSO) risers for extreme environmental conditions


    Beteiligte:
    Yu-Ho Rho (Autor:in) / Kookhyun Kim (Autor:in) / Chul-Hee Jo (Autor:in) / Do-Youb Kim (Autor:in)


    Erscheinungsdatum :

    2013




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt