Production agriculture has recently witnessed exponential growth in the use of UAS technology to obtain site-specific, real-time spectral reflectance data for the management of spatial and temporal variability in agricultural ecosystems. The integration of this novel technology and remotely piloted aerial application systems (RPAASs) for pest management requires data curation on spray pattern uniformity, droplet distribution and the operational factors governing such data. The effects of application height and ground speed on spray pattern uniformity and droplet spectra characteristics for four commercially available RPAAS platforms configured with four different payload capacities (5, 10, 15 and 20 L) and factory-supplied nozzles were investigated. Spray pattern was determined by a cotton string deposition analysis system. Spray droplets captured on water-sensitive paper cards were analyzed using a computer-based scanner system. The test results indicated that each RPAAS platform of varying payload capacity was able to produce an acceptable spray pattern. As the payload capacity increased, so did the effective swath. However, the effective swath was comparable between 15 and 20 L units. The theoretical spray application rate decreased with ground speed. The fundamental data reported here may provide guidance to aerial applicators and help in the furtherance of RPAASs as an effective pest management tool.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Payload Capacities of Remotely Piloted Aerial Application Systems Affect Spray Pattern and Effective Swath


    Beteiligte:


    Erscheinungsdatum :

    2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Payload Technologies For Remotely Piloted Aircraft

    Wegener, Steve / Condon, Estelle | NTRS | 2001


    Remotely Piloted Unmanned Aerial Surveying Vehicle

    Europäisches Patentamt | 2016

    Freier Zugriff

    Entity Perception Using Remotely Piloted Aerial Vehicle

    Emilyn, J. Jeba / Chandrika, S. Sri / Susma, T. et al. | Springer Verlag | 2024


    Remotely Piloted Aircraft Systems

    A. N. Hobbs | NTIS | 2022