In this article, an attitude tracking controller is designed for a quadrotor unmanned aerial vehicle (UAV) subject to lumped disturbances. Firstly, the attitude dynamical model of the quadrotor under external disturbances is established. Subsequently, an improved sliding mode control (SMC) strategy is designed based on the linear extended state observer (LESO). In this control scheme, the SMC will guarantee the sliding surface is finite time reachable and the LESO will estimate and compensate for the lumped disturbances. Then, the robustness and asymptotic stability of the proposed controller are proved by the stability analyses. Finally, three numerical simulation cases and comparative flight experiments validate the effectiveness of the developed controller.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Disturbance Rejection Attitude Control for a Quadrotor: Theory and Experiment


    Beteiligte:
    Li Ding (Autor:in) / Qing He (Autor:in) / Chengjun Wang (Autor:in) / Rongzhi Qi (Autor:in)


    Erscheinungsdatum :

    2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Error-Based Active Disturbance Rejection Altitude/Attitude Control of a Quadrotor UAV

    Stankovic, Momir / Madonski, Rafal / Manojlovic, Stojadin et al. | TIBKAT | 2020





    Wind Disturbance Estimation and Rejection for Quadrotor Position Control

    Waslander, S. / Wang, C. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2009