In this thesis, we consider problems connected to navigation and tracking for autonomousrobots under the assumption of constraints on sensors and kinematics. We study formation controlas well as techniques for filtering and smoothing of noise contaminated input. The scientific contributions of the thesis comprise five papers.In Paper A, we propose three cascaded, stabilizing formation controls for multi-agent systems.We consider platforms with non-holonomic kinematic constraints and directional rangesensors. The resulting formation is a leader-follower system, where each follower agent tracksits leader agent at a specified angle and distance. No inter-agent communication is required toexecute the controls. A switching Kalman filter is introduced for active sensing, and robustnessis demonstrated in experiments and simulations with Khepera II robots.In Paper B, an optimization-based adaptive Kalman filteringmethod is proposed. The methodproduces an estimate of the process noise covariance matrix Q by solving an optimization problemover a short window of data. The algorithm recovers the observations h(x) from a system˙ x = f (x), y = h(x)+v without a priori knowledge of system dynamics. The algorithm is evaluatedin simulations and a tracking example is included, for a target with coupled and nonlinearkinematics. In Paper C, we consider the problem of estimating a closed curve in R2 based on noisecontaminated samples. A recursive control theoretic smoothing spline approach is proposed, thatyields an initial estimate of the curve and subsequently computes refinements of the estimateiteratively. Periodic splines are generated by minimizing a cost function subject to constraintsimposed by a linear control system. The optimal control problem is shown to be proper, andsufficient optimality conditions are derived for a special case of the problem using Hamilton-Jacobi-Bellman theory.Paper D continues the study of recursive control theoretic smoothing splines. A discretizationof the problem is derived, yielding an ...


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Data Filtering and Control Design for Mobile Robots


    Beteiligte:
    Karasalo, Maja (Autor:in)

    Erscheinungsdatum :

    2009-01-01


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Synchronous Mobile Robots Formation Control

    Mohamad Sapiee, Mohd Razali / Mohd Annuar, Khalil Azha | BASE | 2018

    Freier Zugriff

    Mobile Robots

    Mihelj, Matjaž / Bajd, Tadej / Ude, Aleš et al. | Springer Verlag | 2018



    Particle Filtering and Optimal Control for Vehicles and Robots

    Berntorp, Karl | BASE | 2014

    Freier Zugriff

    Hierarchical coordination control of mobile robots

    Adinandra, S. | BASE | 2012

    Freier Zugriff