BACKGROUND: Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention. METHODS: Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWSbaseline), maximum walking speed (MWSbaseline), and paretic propulsion (propbaseline) versus improvements in usual walking speed (∆UWS) and maximum walking speed (∆MWS) were evaluated in moderated regression models. RESULTS: UWSbaseline and MWSbaseline were, respectively, poor predictors of ΔUWS (R (2) = 0.24) and ΔMWS (R (2) = 0.01). Paretic propulsion × walking speed interactions (UWSbaseline × propbaseline and MWSbaseline × propbaseline) were observed in each regression model (R (2) s = 0.61 and 0.49 for ∆UWS and ∆MWS, respectively), revealing that slower individuals with higher utilization of the paretic limb for forward propulsion responded best to FastFES training and were the most likely to achieve clinically important differences. CONCLUSIONS: Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone. ; R01 NR010786 - NINR NIH HHS; K01 HD050582 - NICHD NIH HHS; T32 HD007490 - NICHD NIH HHS; U54 GM104941 - NIGMS NIH HHS; P30 GM103333 - NIGMS NIH HHS


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization


    Beteiligte:

    Erscheinungsdatum :

    2016-09-23


    Anmerkungen:

    0000-0002-0159-8011 (Awad, Louis N)



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch , Unbekannt



    Klassifikation :

    DDC:    629




    Gait Biomechanics While Walking Down an Incline After Exhaustion

    Halder, Amitava / Nordin, Axel / Miller, Michael et al. | BASE | 2023

    Freier Zugriff

    Rehabilitation of gait after stroke: a review towards a top-down approach.

    Belda-Lois, Juan-Manuel / Mena-del Horno, Silvia / Bermejo-Bosch, Ignacio et al. | BASE | 2011

    Freier Zugriff

    Rehabilitation of gait after stroke: a review towards a top-down approach.

    Belda-Lois, Juan-Manuel / Mena-del Horno, Silvia / Bermejo-Bosch, Ignacio et al. | BASE | 2011

    Freier Zugriff

    Gait Disorders in Persons After Stroke

    Jonsdottir, Johanna / Ferrarin, Maurizio | Springer Verlag | 2018


    Is Gait Speed Or Walking Distance A Better Predictor for Community Walking After Stroke?

    Bijleveld-Uitman, M. / van de Port, I. / Kwakkel, G. | BASE | 2013

    Freier Zugriff