Human space activity in the past 50 years has led to a plethora of man-made space debris which pose an imminent threat to global space operations. The current models of space debris orbits are not sufficient for detailed orbit prediction or for accurate tracking. This uncertainty manifests itself in Conjunction Analysis (CA) with active spacecraft, which leads to excessive orbital manoeuvres which are both expensive and reduce the lifetime of satellites. Advances in orbit modelling will lead to better prediction of debris orbits and reduce the need for collision avoidance manoeuvres, as well as minimising the future pollution of the space environment through collisions. Most existing methods for analysing the orbits of space debris do not take into account the effects of tumbling, and the attitude-dependent nonconservative forces are generally neglected. This study models the torques and attitude motion of uncontrolled man-made objects in orbit about the Earth, which tumble due to a combination of natural influences of the near-Earth space environment and initial angular momentum acquired during debris formation. The modelling of space debris is a relatively new field and represents a huge new area of research. The two main branches of this thesis are (a) modelling the torques that induce spin for objects in orbit, and (b) modelling the effect of certain attitude-dependent non-conservative forces on spinning objects in orbit. The main torque modelled in this study is solar radiation pressure (SRP). Simulations of the radiation-induced torques are performed and the main mechanisms that lead to the tumbling of uncontrolled objects are analysed. A novel method of presenting attitude-dependent forces and torques on space objects, dubbed ”Torque Maps”, is presented. Radiation torques are caused by optical geometric asymmetry and can lead to oscillatory and secular changes in attitude. They are computed for one of the largest objects in orbit: Envisat, a defunct satellite with complex geometry. Further to these, ...


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Radiation pressure torque and computational attitude modelling of space debris


    Beteiligte:

    Erscheinungsdatum :

    2017-09-28


    Anmerkungen:

    Doctoral thesis, UCL (University College London).


    Medientyp :

    Hochschulschrift


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Non-Conservative Torque and Attitude Modelling for Enhanced Space Situational Awareness

    Virdee, Hira S. / Grey, Stuart / Bhattarai, Santosh et al. | AIAA | 2014


    Suboptimal attitude control of unknown flexible space debris

    Shakouri, Amir / Emami, M. Reza | Elsevier | 2022


    Vision-Aided Attitude Control for Space Debris Detection

    Felicetti, Leonard / Emami, M. Reza | AIAA | 2017